Publicado Jun 29, 2013



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Silvia C. Gómez Soler

##plugins.themes.bootstrap3.article.details##

Resumo

 


Neste trabalho, propõe-se uma metodologia alternativa para analisar os resultados de exames padronizados que até o momento são analisados mediante rankings construídos a partir de médias aritméticas. Ao utilizar a técnica Propensity Score Matching, comparam-se os resultados de estudantes com características semelhantes nos exames de estado colombianos em nível universitário (ECAES), implementados pelo Ministério da Educação em 2003. Analisa-se o caso dos estudantes de Administração de Empresas da Universidad Javeriana, mas a metodologia pode ser aplicada em outros programas e universidades. Os resultados mostram um impacto significativo do tratamento (ser estudante da Javeriana) sobre o desempenho no ECAES. À diferença dos estudos queusam rankings a partir de médias, os estudantes da Javeriana têm melhor desempenho que os estudantes comparáreis, o que demonstra que a construção e a interpretação desses rankings não são apropriadas.


 


 

Keywords

higher education, exit exams, economics of education, impact evaluationeducación superior, exámenes de Estado, economía de la educación, evaluación de impactoeducação superior, exames de Estado, economia da educação, avaliação de impacto

References
Aghion, P., Boustan, L., Hoxby, C. and Vandenbussche, J. (2005). Exploiting states’ mistakes to identify the causal impact of higher education on growth. Cambridge, MA: Harvard University.

Allcott, H. and Ortega, D. (2009). The performance of decentralized school systems: Evidence from Fe y Alegría in Venezuela. World Bank Policy Research Working Paper Series.

Asociación Colombiana de Facultades de Administración – ASCOLFA (2006). Examen de estado para la calidad de la educación – ECAES en administración. Retrieved on April 10, 2012, from: http://www.ascolfa.edu.co/archivos/ ECAES_2006_-_ANALISIS_DE_RESULTADOS_-_ASCOLFA.pdf

Becker, W. E. (1997). Teaching economics to undergraduates. Journal of Economic Literature, 35 (3), 1347-1373.

Buela-Casal, G., Gutiérrez-Martínez, O., BermúdezSánchez, M. P. and Vadillo-Muñoz, O. (2007). Comparative study of international academic rankings of universities. Scientometrics, 71 (3), 349-365.

Caliendo, M. and Kopeinig, S. (2008). Some practical guidance for the implementation of propensity score matching. Journal of Economic Surveys, 22 (1), 31-72.

Card, D., and Krueger, A. (1994). The economic return to school quality: A partial survey. Industrial Relations Section Working Paper 334: Princeton University.

Carey, K. (2006). College rankings reformed: The case for a new order in higher education. Education Sector. Retrieved from http://www.educationsector.org/publications/college-rankingsreformed

Dehejia, R. H. and Wahba, S. (2002). Propensity score-matching methods for nonexperimental causal studies. Review of Economics and Statistics, 84 (1), 151-161.

Harvey, L. (2008). Rankings of higher education institutions: A critical review. Quality in Higher Education, 14 (3), 187-207.

Heinrich, C., Maffioli, A. and Vázquez, G. (2010). A primer for applying propensity-score matching. Working paper 1005. Inter-American Development Bank, Office of Strategic Planning and Development Effectiveness (SPD).

Instituto Colombiano para la Evaluación de la Educación (ICFES) (2011). ECAES and Saber11 Databases. Programa de Fomento a la Investigación.

Kennedy, P. (2003). A guide to econometrics. The MIT press. 5th Edition.

Popham, W. J. (1999). Why standardized tests don’t measure educational quality. Educational Leadership, 56, 8-16.

Revista Dinero (2007). Universidades ¿dan la talla? Retrieved on March 15, 2012, from: http://www.dinero.com/caratula/edicion-impresa/articulo/ universidades-dan-talla/32928

Saavedra, J. E. (2007). Selective universities and skill acquisition: Evidence from Colombia. Working Paper. Harvard University.

Saavedra, J. E. (2009). The learning and early labor market effects of college quality: A regression discontinuity analysis. Universidad de los Andes, School of Government.

Tambi, A. M. B. A., Ghazali, M. C. and Yahya, N. B. (2008). The ranking of higher education ins titutions: A deduction or delusion?. Total Quality Management and Business Excellence, 19 (10), 997-1011.

Tofallis, C. (2012). A different approach to university rankings. Higher Education, 63 (1), 1-18.

Torres, O. (2007). Panel data analysis: Fixed and random effects. Data and Statistical Services, Princeton University. Retrieved on April 10, 2012, from: http://www.princeton.edu/~otorres/ Panel101.pdf

Universidad Javeriana (2011). Programa de administración de empresas. Retrieved on March 15, 2012, from: http://www.javeriana.edu.co/fcea/

Yaffee, R. (2003). A primer for panel data analysis. Connect - Information Technology at New York University. Retrieved on April 10, 2012, from: http://www.nyu.edu/its/pubs/connect/fall03/ pdfs/yaffee_primer.pdf
Como Citar
Gómez Soler, S. C. (2013). Comparar as médias não é o meio: quantificando o desempenho dos estudantes em exames padronizados. Cuadernos De Administración, 26(46), 201–239. https://doi.org/10.11144/Javeriana.cao26-46.cmem
Seção
Artículos