Predição dos preços médios mensais de contratos despachados no mercado atacadista de eletricidade na Colômbia usando máquinas de vetores de suporte
##plugins.themes.bootstrap3.article.details##
A predição dos preços da eletricidade nos mercados liberalizados e desregulados tem sido considerada uma tarefa difícil, devido à quantidade e complexidade de fatores que governam os preços. Neste artigo prognosticam-se os preços médios mensais dos contratos despachados no mercado elétrico da Colômbia usando uma inovadora rede neural, conhecida como máquina de vetores de suporte. Comparam-se os prognósticos obtidos com um perceptron multicamada e um modelo ARIMA. Os resultados obtidos mostram que a máquina de vetores de suporte captura de melhor forma a dinâmica intrínseca da série de tempo e é capaz de prognosticar com maior precisão para um horizonte de 12 meses adiante.
comparative studies, non-linear series, prediction, electricity prices, neural networksestudos comparativos, séries não lineares, predição, preços de eletricidade, redes neuraisestudios comparativos, series no lineales, predicción, precios de electricidad, redes neuronales
Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121-167.
Chen, R. and Tsay, R. (1993). Functional-coefficient autoregressive models. Journal of the American Statistical Association, 88, 298-308.
Franses, P. H. and van Djck, D. (2000). Non-linear time series models in empirical finance. Cambridge: Cambridge University Press.
Gunn, S. R. (1997). Support vector machines for classification and regression (Technical report). Southampton, UK: Image Speech and Intelligent Systems Research Group, University of Southampton.
Kaastra, I. and Boyd, M. (1996). Designing a neural network for forecasting financial and economic series. Neurocomputing, 10, 215-236.
Masters, T. (1993). Practical neural network recipes in C++. New York: Academic Press.
Neural, novel and hybrid algorithms for time series prediction. (1995). New York: John Wiley and Sons.
Mukherjee, S.; Osuna, E. and Girosi, F. (1997). Nonlinear prediction of chaotic time series using support vector machines. Documento presentado en IEEE NNSP'97, Amelia Island, FL, Estados Unidos.
Muller, K. R.; Smola, A.; Ratsch, G.; Scholkopf, B.; Kohlmorgen, J. and Vapnik, V. N. (1997). Predicting time series with support vector machines. En: W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud (Eds.), Proceedings of ICANN'97, Springer LNCS 1327, Berlin, 999-1004.
Osowski, S. and Garanty, K. (2007). Forecasting of the daily meteorological pollution using wavelets and support vector machine. Engineering Applications of Artificial Intelligence, 20, 745-755.
Platt, L. (1998). Fast training of SVM using sequential optimization. En: B. Scholkopf, B. Burges y A. Smola (Eds.), Advances in Kernel methods-support vector learning (pp. 185-208). Cambridge: MIT Press.
Scholkopf, B. and Smola, A. (2002). Learning with Kernels. Cambridge, MA: MIT Press.
Tay, F. E. H. and Cao, L. (2001). Application of support vector machines in financial time series forecasting. Omega, 29, 309-317.
Teräsvirta, T. (1994). Specification, estimation, and evaluation of smooth transition autoregressive models. Journal of the American Statistical Association, 89, 208-218.
Lin, C. and Granger, C. (1993). Power of the neural network linearity test. Journal of Time Series Analysis, 14, 209-220.
Thissen, U.; van Brakel, R.; de Weijer, A. P.; Melssen, W. J. and Buydens, L. M. C. (2003). Using vector support machines for time series prediction. Chemometrics and Intelligent Laboratory Systems, 69, 35-49.
Tong, G. (1978). On a threshold model. En: C. Chen (Ed.), Pattern recognition and signal processing. Amsterdam: Sijhoff & Noordhoff.
Vapnik, V. N. (1995). The nature of statistical learning theory. New York: Springer.
Statistical learning theory. (1998). New York: Wiley.
Vapnik, V. N.; Golowich, S. E. and Smola, A. J. (1996). Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems, 9, 281-287.
Velásquez, J. D.; Dyner, I. y Souza, R. C. (2007). ¿Por qué es tan difícil obtener buenos pronósticos de los precios de la electricidad en mercados competitivos? Cuadernos de Administración, 20 (34), 259-282.
Zhang, G.; Patuwo, B. and Hu, M. (1998). Forecasting with artificial neural networks: the state of the art. International Journal of Forecasting, 14, 35-62.