Comparison by Means of Picking in Store of Two Delivery Methods in a Home Delivery Environment in Supermarkets. Subject Area: Logistics in the City
##plugins.themes.bootstrap3.article.details##
In Colombia, electronic commerce is increasing considerably according to figures from the Colombian Chamber of Electronic Commerce, CCCE. In this market, department stores such as Jumbo, La 14, Almacenes Éxito, and Carulla, among others, participate through the Home Delivery service. This service consists of 3 main stages, starting on the reception of the order, continuing with the collection in the warehouse of the products that make up the order (order picking), and concluding with delivery to the customer (delivery). Efficiency in logistics processes is essential to ensure the profitability of supermarkets in this segment. Specifically, the order picking stage is fundamental, since it represents about half of the warehouse costs. Framed in the picking in store process, this document presents and analyzes the comparison between two alternatives of product delivery: i) on the same day, ii) on the following day. In the first case, the orders are dispatched as they arrive, following the FIFO (first in first out) criterion for the assignment of each order to each operator. In the second case, the orders are accumulated and dispatched the next day, which allows batching (grouping orders in lots) and assigning one or several lots to each operator to perform the picking. These two alternatives were compared using discrete event simulation. Results indicated that keeping the promise to the customer of delivery on the same day the order is placed increases the operational costs of picking by an average of 450%..
delivery, order picking, lot creation, discrete event simulationEntrega a domicilio, coleta de produtos, criação de lotes, simulação por eventos discretosEntrega a domicilio, recolección de productos, creación de lotes, simulación por eventos discretos.
Bartholdi, John J. & Eisenstein, Donald D. (1996). A Production Line that Balance Itself. Operations Research, 44 (1), Special Issue on New Directions in Operations Management, 21-34.
Boyer, Kenneth K. & Hult, G. Thomas M. (2006). Customer Behavioral Intentions for Online Purchases: An Examination of Fulfillment Method and Customer Experience Level. Journal of Operations
Management, 24 (2), 124-147. http://doi.org/10.1016/j.jom.2005.04.002
Bühler, Dominic; Klein, Robert & Neugebauer, Michael (2016). Model-Based Delivery Cost Approximation in Attended Home Services. Computers & Industrial Engineering, 98 (C), 78-90. http://doi.org/10.1016/j.cie.2016.05.014
Cámara Colombiana de Comercio Electrónico, CCCE (2016). Estudio Observatorio de compra online – Segunda oleada, Colombia 2016. Bogotá. Disponible en: https://www.ccce.org.co/sites/default/files/biblioteca/Infograf%C3%ADa%20.pdf
Chen, Yi-zhou; Shen, Shi Fei; Chen, Tao & Yang, Rui (2014). Path Optimization Study for Vehicles Evacuation Based on Dijkstra Algorithm. Procedia Engineering, 71, 159-165. http://doi.org/10.1016/j.proeng.2014.04.023.Disponible en: https://www.researchgate.net/publication/262769062_Path_Optimization_Study_for_Vehicles_Evacuation_based_on_Dijkstra_Algorithm
Duin, J. H. Ron van; Goffau, Wim de; Wiegmans, Bart; Tavasszy, Lori A. & Saes, Maurice (2016). Improving Home Delivery Efficiency by Using Principles of Address Intelligence for B2C Deliveries.
Transportation Research Procedia, 12, 14-25. http://doi.org/10.1016/j.trpro.2016.02.006. Disponible en: http://repository.tudelft.nl/islandora/object/uuid%3Aa2f956b9-57ad-4f41-ad09-df318acf7234
Durand, Bruno & González-Feliu, Jesús (2012). Urban Logistics and E-Grocery: Have Proximity Delivery Services a Positive Impact on Shopping Trips? Procedia – Social and Behavioral Sciences, 39, 510-520. http://doi.org/10.1016/j.sbspro.2012.03.126
Ehmke, Jan Fabian & Campbell, Ann Melissa (2014). Customer Acceptance Mechanisms for Home Deliveries in Metropolitan Areas. European Journal of Operational Research, 233 (1), 193-207. http://doi.org/10.1016/j.ejor.2013.08.028. Disponible en: https://www.researchgate.net/profile/
Ann_Campbell4/publication/270992093_Customer_acceptance_mechanisms_for_home_deliveries_in_metropolitan_areas/links/561e607208aef097132c1b49/Customer-acceptance-mechanisms-forhome-deliveries-in-metropolitan-areas.pdf
Hall, Randolph W. (1993). Distance Approximations for Routing Manual Pickers in a Warehouse. IIE
Transactions, 25 (4), 76-87. http://doi.org/10.1080/07408179308964306
Henn, Sebastian & Wäscher, Gerhard (2012). Tabu Search Heuristics for the Order Batching Problem in Manual Order Picking Systems. European Journal of Operational Research, 222 (3), 484-494. http://doi.
org/10.1016/j.ejor.2012.05.049
Hong, Soondo; Johnson, Andrew L. & Peters, Brett A. (2012). Batch Picking in Narrow-Aisle Order Picking Systems with Consideration for Picker Blocking. European Journal of Operational Research, 221 (3), 557-570. http://doi.org/10.1016/j.ejor.2012.03.045. Disponible en: https://www.researchgate.net/
publication/257196172_Batch_picking_in_narrow-aisle_order_picking_systems_with_consideration_for_picker_blocking
Hong, Soondo & Kim, Youngjoo (2017). A Route-Selecting Order Batching Model with the S-Shape Routes in a Parallel-Aisle Order Picking System. European Journal of Operational Research, 257 (1), 185-196.http://doi.org/10.1016/j.ejor.2016.07.017
Hsu, Chih-Ming; Chen, Kai-Ying & Chen, Mu-Chen (2005). Batching Orders in Warehouses by Minimizing Travel Distance with Genetic Algorithms. Computers in Industry, 56 (2), 169-
178. http://doi.org/10.1016/j.compind.2004.06.001
Hwang, Heung Suk & Cho, Gyu Sung (2006). A Performance Evaluation Model for Order Picking Warehouse Design. Computers and Industrial Engineering, 51 (2), 335-342.
http://doi.org/10.1016/j.cie.2005.10.002
Javelin Group (2011). How Many Stores Will We Really Need? UK Non-Food Retailing in 2020. Disponible en: http://www.javelingroup. com/white_paper/white_paper_registration_how_many_stores/
Koo, Pyung-Hoi (2009). The Use of Bucket Brigades in Zone Order Picking Systems. OR Spectrum, 31 (4), 759-774. http://doi.org/10.1007/s00291-008-0131-x
Koster, René de (1994). Performance Approximation of Pick-To-Belt Order Picking Systems. European Journal of Operational Research, 72 (3), 558-573. http://doi.org/10.1016/0377-2217(94)90423-5. Disponible en: https://repub.eur.nl/pub/11836/PerformanceApproximation_1994pdf.pdf
Koster, René de; Le-Duc, Tho & Roodbergen, Kees Jan (2007). Design and Control of Warehouse Order Picking: A Literature Review. European Journal of Operational Research, 182 (2), 481-501. http://doi.
org/10.1016/j.ejor.2006.07.009. Disponible en: http://roodbergen.com/publications/EJOR2007.pdf
Le-Duc, Tho & Koster, René de (2007). Travel Time Estimation and Order Batching in a 2-Block Warehouse. European Journal of Operational Research, 176 (1), 374-388.
http://doi.org/10.1016/j.ejor.2005.03.052
Liao, Shu-hsien; Chen, Yin-ju & Lin, Yi-tsun (2011). Mining Customer Knowledge to Implement Online Shopping and Home Delivery for Hypermarkets. Expert Systems with Applications, 38 (4), 3982-3991.
http://doi.org/10.1016/j.eswa.2010.09.059. Disponible en: ftp://140.131.110.38/leecc/public/SPSS&AppofStatistics/2011Papers/Reference/Mining%20customer%20knowledge%20to%20implement%20online%20shopping%20and%20home%20delivery%20for%20hypermarkets.pdf
Martello, Silvano & Toth, Paolo (1987). Algorithms for Knapsack Problems. North- Holland Mathematics Studies, 132 (C), 213-257. http://doi.org/10.1016/S0304-0208(08)73237-7
Pan, Jason Chao-Hsien; Shih, Po-Hsun & Wu, Ming-Hung (2015). Order Batching in a Pick-and-Pass Warehousing System with Group Genetic Algorithm. Omega, 57, 238-248. http://doi.org/10.1016/j.
omega.2015.05.004
Park, Minyoung & Regan, Amelia (2004). Issues in Emerging Home Delivery Operations. University of California Transportation Center, 2 (2), 1-13. http://doi.org/10.1068/a201285
Rincón-García, Nicolás (2016). Freight Transport, Routing Software and Time- Dependent Vehicle Routing Models. Doctoral Thesis. University of Southampton, Faculty of Engineering and the Environment, Southampton, England. Disponible en: https://eprints.soton.ac.uk/397141/1/FINAL%2520ETHESIS%2520FOR%2520EPRINTS%252025739344.pdf
Saskia, Seidel; Mareï, Nora & Blanquart, Corinne (2016). Innovations in e-Grocery and Logistics olutions for Cities. Transportation Research Procedia, 12, 825-835. http://doi.org/10.1016/j.trpro.2016.02.035
Visser, Johan; Nemoto, Toshinori & Browne, Michael (2014). Home Delivery and the Impacts on Urban Freight Transport: A Review. Procedia - Social and Behavioral Sciences, 125, 15-27. http://doi.org/10.1016/j.sbspro.2014.01.1452
Yu, Mengfei & Koster, René de (2010). Enhancing Performance in Order Picking Processes by Dynamic Storage Systems. International Journal of Production Research, 48 (16), 4785-4806. http://doi.
org/10.1080/00207540903055693