Abstract
Malaria is one of the most devastating infectious diseases that has spread to multiple countries. This protozoal-borne disease is caused by Plasmodium spp. carried by female Anopheles mosquito as the vector to human. However, as chloroquine-drug resistance malaria case was found, and more natural compounds should be tested as antimalarial drug. Neem (Azadirachta indica) is one of the plant natives in Southeast Asia, including Indonesia. In this study, leaf extract compounds were identified using Liquid Chromatography Tandem Mass Spectrophotometry (LC-MS/MS) and further characterized by in silico screening against 3 virulence factors known to be involved in the pathogenesis of P. falciparum, including purine nucleoside phosphorylases (PNP), dihydroorotate dehydrogenase (DHODH), and erythrocyte membrane protein 1 (EMP1). The LC-MS/MS resulted in 237 compounds identified, and 5 quinone-derivates were selected for further screening, dubbed compound A to E. From all 5 compounds, compound C is nominated for the best anti-malarial drug candidate in the screening as it topped the frontier molecular orbitals energy gaps (top 3), passed the Lipinski Rules of 5, bioavailability, and synthetic accessibility in ADME test, only has 1 more intermediate than quinine in biosynthetic pathway prediction, and it has some shared enzyme targets. Compound C only has no predicted activity for antiprotozoal in PASS screening. However, in molecular docking and dynamics, compound C has strong binding affinity compared to controls in PNP and DHODH, although it was the second strongest in EMP1. Compound C also belongs to the top 3 with the strongest binding free energy tested with MM/GBSA.
Harijanto P. Malaria. 4 ed. Universitas Indonesia; 2006.
WHO. World Malaria Report, 2022.
https://www.who.int/publications/i/item/9789240064898
Visser BJ,Wieten RW, Kroon D,Nagel IM, Bélard S, vanVugt M, GrobuschMP. Efficacy and safety of artemisinin combination therapy (ACT) for non-falciparum malaria: a systematic review, Malaria Journal, 13(1): 463, 2014.
https://doi.org/10.1186/1475-2875-13-463
Khuroo MS. Chloroquine and hydroxychloroquine in coronavirus disease 2019 (COVID-19). Facts, fiction and the hype: a critical appraisal, International Journal of Antimicrobial Agents, 56(3): 106101, 2020.
https://doi.org/10.1016/j.ijantimicag.2020.106101
Erhunse N, Sahal D. Protecting future antimalarials from the trap of resistance: Lessons from artemisinin-based combination therapy (ACT) failures, Journal of Pharmaceutical Analysis, 11(5): 541-554, 2021.
https://doi.org/10.1016/j.jpha.2020.07.005
Cui L, Su X-z. Discovery, mechanisms of action and combination therapy of artemisinin, Expert Review of Anti-infective Therapy, 7(8): 999-1013, 2009.
https://doi.org/10.1586/eri.09.68
Gopalakrishnan AM, Kumar N. Antimalarial Action of Artesunate Involves DNA Damage Mediated by Reactive Oxygen Species, Antimicrobial Agents and Chemotherapy, 59(1): 317-325, 2015.
https://doi.org/10.1128/aac.03663-14
Waingeh VF, Groves AT, Eberle JA. Binding of quinoline-based inhibitors to Plasmodium falciparum lactate dehydrogenase: a molecular docking study, Open Journal of Biophysics, 3(4): 2013.
https://doi.org/10.4236/ojbiphy.2013.34034
Lalloo DG, Shingadia D, Bell DJ, Beeching NJ, Whitty CJM, Chiodini PL. UK malaria treatment guidelines 2016, Journal of Infection, 72(6): 635-649, 2016.
https://doi.org/10.1016/j.jinf.2016.02.001
Thompson AJ, Lochner M, Lummis SCR. The antimalarial drugs quinine, chloroquine and mefloquine are antagonists at 5-HT3 receptors, British Journal of Pharmacology, 151(5): 666-677, 2007.
https://doi.org/10.1038/sj.bjp.0707238
Cechinel-Filho V. Plant bioactives and drug discovery: principles, practice, and perspectives. John Wiley & Sons, 2012.
Plant of The World Online. 2023.
https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:1213180-2
Simatupang GMK LD, Ferdinal F, Yulianti E. Identifikasi fitokimia dan kapasitas total antioksidan daun mimba (Azadirachta indica A. Juss) serta uji toksisitasnya terhadap larva Artemia salina Leach, Tarumanegara Medical Journal, 5(1): 59-66, 2023.
Udeinya JI, Shu EN, Quakyi I, Ajayi FO. An Antimalarial Neem Leaf Extract has Both Schizonticidal and Gametocytocidal Activities, American Journal of Therapeutics, 15(2): 108-110, 2018.
https://doi.org/10.1097/MJT.0b013e31804c6d1d
White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM. Malaria, The Lancet, 383(9918): 723-735, 2014.
https://doi.org/10.1016/S0140-6736(13)60024-0
Kokkonda S, El Mazouni F, White KL, White J, Shackleford DM, Lafuente-Monasterio MJ, Rowland P, Manjalanagara K, Joseph JT, Garcia-Perez A, Fernandez J, Gamo FJ,Waterson D, Burrows JN, Palmer MJ, Charman SA, Rathod PK, Phillips MA. Isoxazolopyrimidine-Based Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase with Antimalarial Activity, ACS Omega, 3(8): 9227-9240, 2018.
https://doi.org/10.1021/acsomega.8b01573
Ichida K, Hosoyamada M, Hosoya T, Endou H. Chapter 38 - Primary Metabolic and Renal Hyperuricemia. In: Lifton RP, Somlo S, Giebisch GH, Seldin DW, editors. Genetic Diseases of the Kidney. San Diego: Academic Press; 651-660, 2009.
Dziekan JM, Yu H, Chen D, Dai L,Wirjanata G, Larsson A, Prabhu N, Sobota RM, Bozdech Z, Nordlund P. Identifying purine nucleoside phosphorylase as the target of quinine using cellular thermal shift assay, Science Translational Medicine, 11(473): 2019.
https://doi.org/10.1126/scitranslmed.aau3174
Lennartz F, Smith C, Craig AG, Higgins MK. Structural insights into diverse modes of ICAM-1 binding by Plasmodium falciparum-infected erythrocytes, Proceedings of the National Academy of Sciences, 116(40): 20124-20134, 2019.
https://doi.org/10.1073/pnas.1911900116
Parikesit AA, Nurdiansyah R, Garrido G. Natural products repurposing of the H5N1-based lead compounds for the most fit inhibitors against 3C-like protease of SARS-CoV-2, Journal of Pharmacy & Pharmacognosy Research, 9(5): 730-745, 2021.
Ayers M. ChemSpider: The Free Chemical Database, Reference Reviews, 26(7): 45-46, 2012.
https://doi.org/10.1108/09504121211271059
Patai S, Rappoport Z. The Quinonoid Compounds: Part 2. John Wiley & Sons Ltd, 1988.
Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Scientific Reports, 7(1): 42717, 2017.
https://doi.org/10.1038/srep42717
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Advanced Drug Delivery Reviews, 46(1): 3-26, 2001.
https://doi.org/10.1016/S0169-409X(00)00129-0
Martin YC. A Bioavailability Score, Journal of Medicinal Chemistry, 48(9): 3164-3170, 2005.
https://doi.org/10.1021/jm0492002
Ertl P, Schuffenhauer A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions, Journal of Cheminformatics, 1(8), 2009.
https://doi.org/10.1186/1758-2946-1-8
Zheng S, Zeng T, Li C, Chen B, ColeyCW, Yang Y,Wu R. Deep learning driven biosynthetic pathways navigation for natural products with BioNavi-NP, Nature Communications, 13(1): 3342, 2022.
https://doi.org/10.1038/s41467-022-30970-9
Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules, Nucleic Acids Research, 47(W1): W357-W364, 2019.
https://doi.org/10.1093/nar/gkz382
Lagunin A, Stepanchikova A, Filimonov D, Poroikov V. PASS: prediction of activity spectra for biologically active substances, Bioinformatics, 16(8): 747-748, 2000.
https://doi.org/10.1093/bioinformatics/16.8.747
Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson GA. Gaussian 09. Wallingford, CT, USA: Gaussian Inc. 2013.
Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform, Journal of Cheminformatics, 4(17), 2012.
https://doi.org/10.1186/1758-2946-4-17
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox, Journal of Cheminformatics, 3(33), 2011.
https://doi.org/10.1186/1758-2946-3-33
Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A, 38(6): 3098-3100, 1988.
https://doi.org/10.1103/PhysRevA.38.3098
Lee C, YangW, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, 37(2): 785-789, 1988.
https://doi.org/10.1103/PhysRevB.37.785
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, Journal of Computational Chemistry, 31(2): 455-461, 2010.
https://doi.org/10.1002/jcc.21334
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 1-2: 19-25, 2015.
https://doi.org/10.1016/j.softx.2015.06.001
Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E. gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS, Journal of Chemical Theory and Computation, 17(10): 6281-6291, 2021.
https://doi.org/10.1021/acs.jctc.1c00645
Hou T,Wang J, Li Y,WangW. Assessing the Performance of the MM/PBSA and MM/GBSA Methods. 1. The Accuracy of Binding Free Energy Calculations Based on Molecular Dynamics Simulations, Journal of Chemical Information and Modeling, 51(1): 69-82, 2011.
https://doi.org/10.1021/ci100275a
Huang S-Y. Comprehensive assessment of flexible-ligand docking algorithms: current effectiveness and challenges, Briefings in Bioinformatics, 19(5): 982-994, 2017.
https://doi.org/10.1093/bib/bbx030
Rahmah Z, Nirmala KC, Nashichuddin A, Riskiyana R, Milliana A, Indriana N, Fitria L, Ayudianti P, Kholil M. Effect of neem leaf extract (Azadirachta indica) in reducing the degree of parasitemia and apoptosis in C57BL mice with cerebral malaria, Veterinary World, 17(7): 1497, 2024.
Indriana N, Kustiawan NS, Milliana A, Rahmah Z, Nashichuddin A, Pagalay U, Wulan P, Kusuma YI, Kholil M. Effect of neem leaf therapy (Azadirachta indica) on TNF-a expression and hepatocyte apoptosis of balb/c mice infected with Plasmodium berghei anka,
GSC Biological and Pharmaceutical Sciences, 25(2): 283-292, 2023.
Rahmah Z, Arif CH, Milliana A, Indriana N, Nashichuddin A. Prevention of Cerebral Malaria Hypoxia through administration of Neem leaves extract (Azadirachta indica) in Mice C57BL. Research Journal of Pharmacy and Technology, 17(1), 2024.
Igwenyi IO, Onodugo CA, Aja PM, Elom SO, Awoke JN, Ibhadode OS, Uraku AJ, Nzubechukwu E, Obasi AN, Ebuka ED, Igwenyi IP, Ogbu PN, Egwu C, Atoki AV. Azadirachta indica fruit juice clears malaria parasites and replenishes blood levels in Plasmodium berghei-infected mice, Phytomedicine Plus, 4(4): 100615, 2024.
https://doi.org/10.1016/j.phyplu.2024.100615
Hagar M, Ahmed HA, Aljohani G, Alhaddad OA. Investigation of Some Antiviral N-Heterocycles as COVID 19 Drug: Molecular Docking and DFT Calculations, International Journal of Molecular Sciences, 21(11): 3922, 2020.
Price G, Patel DA. Drug Bioavailability, StatPearls Publishing, Treasure Island (FL), 2023.
Geerlings A, Hallard D, Martinez Caballero A, Lopes Cardoso I, van der Heijden R, Verpoorte R. Alkaloid production by a Cinchona officinalis ’Ledgeriana’ hairy root culture containing constitutive expression constructs of tryptophan decarboxylase and strictosidine
synthase cDNAs from Catharanthus roseus, Plant Cell Reports, 19(2): 191-196, 1999.
https://doi.org/10.1007/s002990050732
Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskii DS, Pogodin PV, Poroikov VV. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource, Chemistry of Heterocyclic Compounds, 50(3): 444-457, 2014.
https://doi.org/10.1007/s10593-014-1496-1
National Center for Biotechnology Information: PubChem Bioassay Record for AID 1118191, Source: ChEMBL, 2024.
https://pubchem.ncbi.nlm.nih.gov/bioassay/1118191
Al-Khafaji K, Al-Duhaidahawi D, Taskin Tok T. Using integrated computational approaches to identify safe and rapid treatment for SARS-CoV-2, Journal of Biomolecular Structure and Dynamics, 39(9): 3387-3395, 2020.
https://doi.org/10.1080/07391102.2020.1764392
Hameed A, Masood S, Hameed A, Ahmed E, Sharif A, Abdullah MI. Anti-malarial, cytotoxicity and molecular docking studies of quinolinyl chalcones as potential anti-malarial agent, Journal of Computer-Aided Molecular Design, 33(7): 677-688, 2019.
https://doi.org/10.1007/s10822-019-00210-2
Patel AJ, Patel MP, Dholakia AB, Patel VC, Patel DS. Antitubercular, Antimalarial Activity and Molecular Docking Study ofNewSynthesized 7-Chloroquinoline Derivatives, Polycyclic Aromatic Compounds, 42(7): 4717-4725, 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2025 Alfin Hidayat, Mamat Sugianto, Ali Budhi Kusuma, Lili Suharli, Adhityo Wicaksono